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Abstract

An exact non-reflecting boundary conditions based on a boundary integral equation or a modified Kirchhoff-type

formula is derived for exterior three-dimensional wave equations. The Kirchhoff-type non-reflecting boundary condi-

tion is originally proposed by L. Ting and M.J. Miksis [J. Acoust. Soc. Am. 80 (1986) 1825] and numerically tested by

D. Givoli and D. Cohen [J. Comput. Phys. 117 (1995) 102] for a spherically symmetric problem. The computational

advantage of Ting–Miksis boundary condition is that its temporal non-locality is limited to a fixed amount of past

information. However, a long-time instability is exhibited in testing numerical solutions by using a standard non-

dissipative finite-difference scheme. The main purpose of this work is to present a new exact boundary condition and to

eliminate the long-time instability. The proposed exact boundary condition can be considered as a limit case of Ting–

Miksis boundary condition when the two artificial boundaries used in their method approach each other. Our boundary

condition is actually a boundary integral equation on a single artificial boundary for wave equations, which is to be

solved in conjunction with the interior wave equation. The new boundary condition needs only one artificial boundary,

which can be of any shape, i.e., sphere, cubic surface, etc. It keeps all merits of the original Kirchhoff boundary

condition such as restricting the temporal non-locality, free of numerical evaluation of any special functions and so on.

Numerical approximation to the artificial boundary condition on cubic surface is derived and three-dimensional nu-

merical tests are carried out on the cubic computational domain.
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1. Introduction

We consider the three-dimensional wave equation:

o2u
ot2

¼ c2r2uþ f ðx; tÞ in X� ð0; T Þ; ð1Þ
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u ¼ g or onu ¼ g on c� ð0; T Þ; ð2Þ
uðx; 0Þ ¼ u0ðxÞ in X; ð3Þ
otuðx; 0Þ ¼ u1ðxÞ in X; ð4Þ

where X is an infinite domain in three-dimension exterior to an obstacle or a scatterer with a boundary c as
indicated in Fig. 1, u0ð�Þ, u1ð�Þ and f ð�; tÞ have compact supports in R3.

In order to solve the problem numerically on unbounded domain by using a finite difference (FD) or

a finite element (FE) method, one has to truncate the infinite domain via an artificial boundary S
around the obstacle (see Fig. 2) and applying some boundary condition on S, which is called artificial

boundary condition or non-reflecting boundary condition (NRBC); see [1,3–5,8–10,14] for wave equation

and [6,18] for recent review on this subject. An alternative way to handle the unbounded domain is to

use spectral method with approximate basis functions, see, e.g. [12,15]. In this work, we will be interested

in using artificial boundary conditions. The computational domain Xi is bounded internally by c and

externally by S. The artificial boundary S is chosen to enclose all the ‘‘irregularities’’ in the unbounded
domain. Here the ‘‘irregularities’’ means wave sources, non-zero initial conditions, inhomogeneous

medium and so on. The unbounded domain exterior to S is denoted by Xe, which includes only zero

initial conditions, homogeneous medium and no wave sources and where the medium is to be at rest for

times t6 0.

In this paper, we derive a new exact NRBC for exterior three-dimensional wave equations by using

a boundary integral equation or a modified Kirchhoff formula. The Kirchhoff-type NRBC is originally

proposed by Ting and Miksis [17] and numerically tested by Givoli and Cohen [8] for one-dimensional

problems. The computational advantage of this approach is that its temporal non-locality is limited to
a fixed amount of past information. However, a long-time instability is exhibited in the testing nu-

merical solutions by using a standard non-dissipative finite-difference scheme in the computational

domain. This instability could be eliminated by introducing additional dissipation into the scheme as

suggested in [8], but it is known that the central non-dissipative difference scheme for nonlinear wave

equation is an multi-symplectic scheme [13], which has the advantage for computing long time evolution

problem such as superior energy-conserving behavior, better preserving waveform and superior

stability.
Fig. 1. The infinite domain X with a boundary c.



Fig. 2. S is an artificial boundary and Xi is computational domain.
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The new NRBC proposed in this paper can be considered as a limit case of Ting–Miksis boundary

condition when the two artificial boundaries used in their method approach each other. In fact, the limit
boundary condition is a boundary integral equation on a single artificial boundary for wave equation.

Since the boundary integral equation involves both u and onu on the boundary, the boundary integral

can not be solved independently and has to be solved in conjunction with the interior wave equation,

which may has variable coefficients or is nonlinear. Therefore, the boundary integral equation can be

considered as an exact artificial boundary condition for the interior wave equation. If the interior

equation is discretized by FD or FE method and the boundary integral equation is approximated by

quadrature formula (QF) or boundary element (BI) method, this is also called coupled FD or FE with QF

or BE method for solving wave equation in infinite domains. In fact, the coupled FE with BE method for
solving elliptic equation in unbounded domain is very popular and efficient (see e.g. [7]). As far as I

know the work presented in this paper is the first to directly apply the boundary integral equation on a

single artificial surface enclosing the scattering object and the wave equation with variable coefficient and

to implement coupled FD in the resulting bounded domain problem with QF method for the boundary

integral. Of course, the NRBC can also be implemented by using FE method in the interior domain and

BE method on the boundary. This is an interesting research subject and will be reported elsewhere. It is

noticed that a different approach is introduced in [14] to construct an artificial boundary condition

with restricted temporal non-locality, which does not require a discrete approximation of the Kirchhoff
integral.

It is shown that for the spherically symmetric case both continue version and discrete version of the new

NRBC are equivalent to that of the local NRBC proposed by Engquist and Majda [4]. Numerical results

obtained by using our NRBC for the one-dimensional problems verify our theoretical claims and dem-

onstrate the desired long time stability.

The new NRBC only needs one artificial boundary, which is contrast to the original Kirchhoff-type

condition which requires two artificial boundaries. The new boundary condition preserves the main

advantages of Kirchhoff condition: the artificial boundary can be of any shape, i.e. sphere, cubic surface
and so on; it requires only fixed storage of the past information of the solution at the artificial boundary;

there is no need of any numerical evaluation of special functions; the size of the computation domain is

of the same order as the scatterer; if explicit difference scheme is used in the interior domain, the



Z.-H. Teng / Journal of Computational Physics 190 (2003) 398–418 401
boundary condition can be solved at each time step independently, due to the retarded time property; for

cubic artificial boundary only one set of mesh grid to both inside of and on boundary of the cube is

required.

A key ingredient in deriving the new NRBC is the boundary integral equation or the modified Kirchhoff

formula for the time-dependent wave equation, which is also obtained by using Green�s formula.

Numerical approximation to the artificial boundary condition on cubic surface is derived and three-

dimensional numerical tests are carried out on a cubic computational domain by using the standard non-

dissipative central difference scheme. The numerical solutions are in good agreement with exact solutions
without producing spurious reflection from the artificial boundary. The overall scheme is shown to be

stable in all our tests.
2. Boundary integral equation and new NRBC

2.1. Kirchhoff’s formula and boundary integral equation for wave equation

Let D be a three-dimensional unbounded domain with piecewise smooth interior boundary oD, indicated
in Fig. 3, and wð�; sÞ be smooth function with compact support in R3. It is easy to show that

vðwss � c2r2wÞ � wðvss � c2r2vÞ ¼ ~rr � f�c2vrwþ c2wrv; vws � wvsg;

where ~rr ¼ frn; osg is the space-time gradient vector. Integrating over the domain D� ½0; t� we obtain the

Green�s formula:Z Z Z Z
D�½0;t�

fvðwss � c2r2
nwÞ � wðvss � c2r2

nvÞgdnds

¼
Z Z Z Z

D�½0;t�
~rr � f�c2vrnwþ c2wrnv; vws � wvsgdnds

¼
Z Z Z

oD�½0;t�
ð�c2vrnwþ c2wrnvÞ � ndrn dsþ

Z Z Z
D
ðvws � wvsÞdnjs¼t

s¼0; ð5Þ

where dn ¼ dn1 dn2 dn3, n is the unit normal to oD as indicated in Fig. 3. The last integral in the above
equation is obtained by using the divergence theorem and the fact that wðn; sÞ is zero for sufficiently large jnj.
Fig. 3. The diagram for Green�s formula.
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Let wðn; sÞ be a solution of the wave equation with compact initial data w0ð�Þ and w1ð�Þ in D, i.e.,

o2sswðn; sÞ � c2r2
nwðn; sÞ ¼ 0; ðn; sÞ 2 D� Rþ;

wjs¼0 ¼ w0ðnÞ; oswjs¼0 ¼ w1ðnÞ; n 2 D;

�

where w and onw on the boundary oD are not prescribed, and v be the fundamental solution of the wave

equation

v ¼ 1

4pcjn� xj dðcðs� tÞ þ jn� xjÞ;

where v satisfies vss � c2r2
nv ¼ dðn� xÞdðs� tÞ in the weak sense and ðx; tÞ 2 D� Rþ is a given point. Then

substituting w and v into the Green�s formula (5) gives the Kirchhoff �s formula (see [2,11]) with non-zero

initial data:

wðx; tÞ ¼ � 1

4p

Z Z
oD

½w� o
on

1

q

� ��
� 1

q
ow
on

� �
� 1

qc
oq
on

ow
ot

� ��
drn

þ 1

4pðctÞ2
Z Z

D\Sðx;ctÞ
w0

�
� ct

ow0

on
þ tw1

�
drn; x 2 D; ð6Þ

where q ¼ jn� xj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � x1Þ2 þ ðn2 � x2Þ2 þ ðn3 � x3Þ2

q
, Sðx;RÞ is a spherical surface defined by

Sðx;RÞ ¼ fn j jn� xj ¼ Rg and o=on is the normal derivative at n on oD or Sðx; ctÞ. The operator ½�� above is
the retarded value operator, defined by

½F � ¼ F ðn; sÞjs¼t�q=c: ð7Þ

The derivation of the formula (6) requires some applications of the generalized function and we omit the

details here (see for example [19]). By taking the limits of the above integral in the normal direction at oD as

x approaching oD, we obtain the following boundary integral equation for the wave equation:

wðx; tÞ ¼ HðxÞ
4p

wðx; tÞ � 1

4p

Z Z
oD

½w� o
on

1

q

� ��
� 1

q
ow
on

� �
� 1

qc
oq
on

ow
ot

� ��
drn

þ 1

4pðctÞ2
Z Z

D\Sðx;ctÞ
w0

�
� ct

ow0

on
þ tw1

�
drn; x 2 oD;

which is equivalent to

wðx; tÞ 1

�
�HðxÞ

4p

�
¼ � 1

4p

Z Z
oD

½w� o
on

1

q

� ��
� 1

q
ow
on

� �
� 1

qc
oq
on

ow
ot

� ��
drn

þ 1

4pðctÞ2
Z Z

D\Sðx;ctÞ
w0

�
� ct

ow0

on
þ tw1

�
drn; x 2 oD; ð8Þ

where HðxÞ denotes the exterior solid angle at x 2 oD. For oD possessing a unique tangent plane at x,
HðxÞ ¼ 2p, and as a result

wðx; tÞ ¼ � 1

2p

Z Z
oD

½w� o
on

1

q

� ��
� 1

q
ow
on

� �
� 1

qc
oq
on

ow
ot

� ��
drn

þ 1

2pðctÞ2
Z Z

D\Sðx;ctÞ
w0

�
� ct

ow0

on
þ tw1

�
drn; x 2 oD: ð9Þ

Notice that the first integrals on the right-hand sides of (8) and (9) are singular integrals. The boundary

integral equations (8) and (9) are not only the bases for us to derive the new NRBC, but also very useful
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tools for solving initial-boundary value problems of wave equation in both bounded and unbounded do-

mains. The derivation of the boundary integral equation (8) from (6) is very similar to that for Laplace�s
equation in three-dimension and its details are omitted here.

2.2. The new NRBC

First we introduce the original Kirchhoff-type exact NRBC proposed by Ting and Miksis [17]. The

NRBC uses two artificial boundaries B and S; the diagram is shown in Fig. 4. The computational domain

is bounded by the surface of the scatterer c and by the artificial boundary B. The boundary B can be of any

shape and the boundary S, located inside the computation domain, contains all of the supports of u0ð�Þ,
u1ð�Þ and f ð�; sÞ for 06 s6 T . The exact NRBC of Ting–Miksis making use of the Kirchhoff formula (6) to

the solution u of the wave equation (1) on the boundary S gives:

uðx; tÞ ¼ � 1

4p

Z Z
S

½u� o
on

1

q

� ��
� 1

q
ou
on

� �
� 1

qc
oq
on

ou
ot

� ��
drn; x 2 B;

where u is the wave solution given by (1)–(4). This condition was not implemented numerically in [17].

Several years later, the FD implementation of this condition for the spherically symmetric case was carried
out by Givoli and Cohen [8]. It was found that numerical scheme based on the Ting–Miksis condition

exhibits numerically instability in long times. This instability may be eliminated by using a dissipative in-

terior FD scheme as suggested by Givoli and Cohen.

The new NRBC is based on the boundary integral equation (8), which needs only one artificial boundary

S of any shape; the set up is shown in Fig. 2. The computational domain Xi is bounded by the surface of

the scatterer c and by the artificial boundary S. The boundary S is chosen to inclose all of the supports of

u0ð�Þ, u1ð�Þ and f ð�; sÞ for 06 s6 T . The new NRBC making use of the boundary integral Eq. (8) to the

wave solution u on the artificial boundary S gives:

uðx; tÞ 1

�
�HðxÞ

4p

�
¼ � 1

4p

Z Z
S

½u� o
on

1

q

� ��
� 1

q
ou
on

� �
� 1

qc
oq
on

ou
ot

� ��
drn; x 2 S; ð10Þ
Fig. 4. Diagram for the Ting–Miksis NRBC.
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where u is the wave solution given by (1)–(4) and the artificial boundary S is shown on Fig. 2. Notice that

the right-hand side is a singular integral, where q ¼ jx� nj, o=on is the normal derivative at n on S and

HðxÞ is the exterior solid angle at x 2 S. The operator ½�� is the retarded value operator, defined by (7). For

a smooth artificial boundary S, HðxÞ ¼ p=2 and the new NRBC reduces to

uðx; tÞ ¼ � 1

2p

Z Z
S

½u� o
on

1

q

� ��
� 1

q
ou
on

� �
� 1

qc
oq
on

ou
ot

� ��
drn; x 2 S: ð11Þ

Since the boundary integral equation (10) or (11) involves both unknowns u and onu on the artificial

boundary S, the equation can not be solved independently and has to be solved in coupled with the

interior wave equation, which may has variable coefficients or is nonlinear. Therefore the boundary

integral equation can be considered as an exact artificial boundary condition for the interior wave

equation.

The NRBC (10) or (11) is non-local in space and time. However, the temporal non-locality is restricted
to a fixed amount of historical data, since the boundary integral (10) or (11) involves the retarded time

s ¼ t � q=c, which is bounded by

t � qmax=c6 s6 t; where qmax ¼ max
x;n2S

jx� nj:

For example, if the artificial boundary S is a sphere with radius R, then qmax ¼ 2R and the retarded time

s is in the interval t � 2R=c6 s6 t and if the artificial boundary S is a cubic surface with side length L,
then qmax ¼

ffiffiffi
3

p
L and the retarded time s is in the interval t �

ffiffiffi
3

p
L=c6 s6 t. This means that the his-

torical memory required by the NRBC does not grow in time and this is a main advantage of the present

method.
3. One-dimensional spherically symmetric model

We consider the wave equation with spherically symmetric model, namely f ðx; tÞ ¼ f ðjxj; tÞ,
u0ðxÞ ¼ u0ðjxjÞ, u1ðxÞ ¼ u1ðjxjÞ, and c ¼ fxjjxj ¼ rcg. Then the three-dimensional wave equation problem

reduces to

o2v
ot2

� c2
o2v
or2

¼ F ðr; tÞ for rP rc; tP 0 ð12Þ
vðrc; tÞ ¼ rcgðtÞ for tP 0 ð13Þ
vðr; 0Þ ¼ otvðr; 0Þ ¼ 0 for rP rc; ð14Þ

where r ¼ jxj, vðr; tÞ ¼ ruðr; tÞ and F ðr; tÞ ¼ rf ðr; tÞ. Here without loss of generality we assume u0 ¼ u1 ¼ 0.

We will show that for the one-dimensional symmetric model both continue and discrete version of the

new NRBC are equivalent to that of the Engquist–Majda local NRBC [4].
3.1. Continuous version

For one-dimensional model with a spherical artificial boundary S of radius a (see the diagram of S in

Fig. 5), the new NRBC (11) reduces to



Fig. 5. Spherical artificial boundary S.
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uða; tÞ ¼ � 1

2

Z p

0

u a; t
��

� 2a
c

sin
h
2

� ��

þ 2a
ou
or

a; t
�

� 2a
c

sin
h
2

� ��
þ 2a

c
sin

h
2

� �
ou
ot

a; t
�

� 2a
c

sin
h
2

� ���
cos

h
2

� �
dh

¼ �
Z 2a=c

0

uða; t
�

� aÞ þ 2a
ou
or

ða; t � aÞ þ a
ou
ot

ða; t � aÞ
�

c
2a

da: ð15Þ

Using integration by parts for the third integrand gives

Z 2a=c

0

oðruÞ
ot

ða; t
�

� aÞ þ c
oðruÞ
or

ða; t � aÞ
�
da ¼ 0:

Since the above equation holds for any t, on account of uðr; tÞ and otuðr; tÞ being zero for t6 0, we

obtain

oðruÞ
ot

ða; tÞ þ c
oðruÞ
or

ða; tÞ ¼ 0

or

ov
ot

ða; tÞ þ c
ov
or

ða; tÞ ¼ 0:

This shows that for one-dimensional model the new NRBC is equivalent to the Engquist–Majda�s local

NRBC.

3.2. Discrete version

Assume that the numerical solution at the artificial boundary is denoted by unðaÞ � uða; tnÞ with tn ¼ nDt
and that the set fam jm ¼ 0; . . . ;Mg is the grid points in the time interval ½0; 2a=c� with a0 ¼ 0 and



406 Z.-H. Teng / Journal of Computational Physics 190 (2003) 398–418
aM ¼ 2a=c. Applying the trapezoidal rule to the first two integrands and the central-point rule to the third

integrand of the NRBC (15) gives

�uuða; tnÞ ¼ �
XM
m¼0

Damf�uuða; tn � amÞ þ 2aDr�uuða; tn � amÞg
c
2a

�
XM
m¼1

am�1=2Dt�uuða; tn � am�1=2ÞDam�1=2

c
2a

;

ð16Þ

where am ¼ 2a sinðhm=2Þ=c for m ¼ 0; 1; . . . ;M , hm ¼ mDh with Dh ¼ p=M , am�1=2 ¼ ðam þ am�1Þ=2 and
Dam�1=2 ¼ am � am�1 for m ¼ 1; 2; . . . ;M , and

Dam ¼
a1=2 for m ¼ 0;
amþ1=2 � am�1=2 for m ¼ 1; 2; . . . ;M � 1;
2a=c� aM�1=2 for m ¼ M :

8<
:

Here �uuða; tÞ is an interpolation through

ul�1=2ðaÞ :¼ ulðaÞ þ ul�1ðaÞ
2

for l ¼ 1; . . . ; L;

where L has to satisfy LDt ¼ 2a=c. This interpolation has to satisfy the identity (17) given bellow. The
difference quotients Dr and Dt are defined by

Dr�uuða; sÞ ¼
�uuða; sÞ � �uuða� h; sÞ

h

and

Dt�uuða; tn � am�1=2Þ ¼
�uuða; tn � am�1Þ � �uuða; tn � amÞ

am � am�1

:

Some calculation on the above equation gives

�uuða; tnÞ � �uuða; tn � aMÞ ¼ �
XM
m¼0

Damf�uuða; tn � amÞ þ aDr�uuða; tn � amÞg
c
2a

or

XL
l¼1

Dt�uuða; tn�lþ1=2ÞDt ¼ �
XM
m¼0

Damf�uuða; tn � amÞ þ aDr�uuða; tn � amÞg
c
2a

¼ �
XL
l¼1

Dtfun�lþ1=2ðaÞ þ aDrun�lþ1=2ðaÞg c
2a

: ð17Þ

We notice that the last identity in (17) is satisfied by an integral-average interpolation for �uuða; tn � amÞ
defined by

�uuða; tn � amÞ :¼
1

Dam

Z tn�am�1=2

tn�amþ1=2

�uuDtða; sÞds

under the condition Dam < Dt for all m ¼ 0; 1; . . . ;M , where �uuDtða; sÞ is a piecewise constant function de-
fined by �uuDtða; sÞ :¼ ulþ1=2ðaÞ for s 2 ½tl; tlþ1�, a�1=2 ¼ 0 and aMþ1=2 ¼ 2a=c. An integral-average interpolation

for Dr�uuða; tn � amÞ can be defined similarly.
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We have to point out that a sufficient condition for Dam < Dt is that

Dh ¼ p=M < Dt: ð18Þ

This gives an important relationship between the boundary integral step Dh and the interior time step Dt.
Since the above equation holds for all n, on account of �uuða; sÞ being zero for s < 0, we can deduce that

Dtðr�uuÞða; tn�1=2Þ þ cð�uuða; tn�1=2Þ þ aDr�uuða; tn�1=2ÞÞ ¼ 0

or

Dtðr�uuÞða; tn�1=2Þ þ cDrðr�uuÞða; tn�1=2Þ ¼ 0: ð19Þ

This is a discrete version of

ov
ot

ða; tÞ þ c
ov
or

ða; tÞ ¼ 0:

Therefore, we have shown that both the continue version (15) and the discrete version (16) of the new
NRBC are equivalent to that of the local Engquist–Majda NRBC.
3.3. Numerical test and long-time stability

In this section, we will repeat the numerical test given by Givoli and Cohen in [8] by using our

new NRBC. The main objective of this subsection is to test the long-time stability of the proposed

method.
Fig. 6. The numerical solutions uða; tÞ obtained by using the local NRBC (19) and the new NRBC (16), for gðtÞ ¼ sin 4t and the

parameters a ¼ 1, h ¼ 0:9=180 ¼ 0:005, Dt ¼ 0:003656 and Dh ¼ p=1000 ¼ 0:0031415926.
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For the test problem, f � 0 or F � 0 in (12) and the exact solution of (12)–(14) is given by

vðr; tÞ ¼ 0; t < ðr � rcÞ=c;
rcgðt � ðr � rcÞÞ=c; tP ðr � rcÞ=c:

�
ð20Þ

The one-dimensional wave equation (12) in the computational domain rc 6 r6 a is solved by the standard
non-dissipative central difference scheme

unþ1
j ¼ 2unj � un�1

j þ cDt
h

� �
ðunjþ1 � 2unj þ unj�1Þ;

where h ¼ ða� rcÞ=K is the mesh size in space with K a given positive integer, and Dt is a time step satisfying
the stability condition cDt=h6 1.

At the artificial boundary r ¼ a two discrete artificial boundary conditions are used for the purpose of

comparison: the new NRBC (16) and the local Engquist–Majda NRBC (19).

In numerical computation we set c ¼ 1, rc ¼ 0:1 and a ¼ 1 and take gðtÞ ¼ sinxt. The parameters we

choose are that the space step h ¼ 0:9=180 ¼ 0:005, the time step Dt ¼ 0:003656 < h satisfying the stability

condition, the boundary integral step Dh ¼ p=1000 ¼ 0:0031415926 < Dt satisfying the relationship condi-

tion (18), and the frequencyx ¼ 4. Fig. 6 shows the two numerical solutions at r ¼ a ¼ 1 as a function of time.

From Fig. 6 we see that the new NRBC solution coincides with the local NRBC solution, which verifies the
theoretical result given in the above subsection: the discrete version of the newNRBC (16) is equivalent to that

of the local Engquist–MajdaNRBC (19). Both numerical solutions agree with the exact solution very well for

all time 06 t6 20 and the solution by using the new NRBC never develops instability. In contrast, the so-

lution obtained by using the Ting–Miksis NRBC starts to develop a clear instability at about t ¼ 7 (see [8]).
4. Cubic artificial boundary

In this section, we apply the NRBC (10) to a cubic artificial boundary (see Fig. 7) and give details

description of the NRBC on the cubic boundary.

The cubic artificial boundary of side length 2a is plotted in Fig. 7, which consists of six faces:
Fig. 7. Cubic artificial boundary: S ¼ [l2LSl.
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Sl ¼ fðn1; n2; n3Þjnjlj ¼ signðlÞa;�a < nj < a; j 6¼ jljg

for each l 2 L, where

L :¼ f�3;�2;�1; 1; 2; 3g:

We use the notation El;s for l; s 2 L and jlj 6¼ jsj to denote 12 edges of the cube:

El;s :¼ fðn1; n2; n3Þjnjlj ¼ signðlÞa; njsj ¼ signðsÞa;�a < nj < a; j 6¼ jlj; jsjg;

and the notation Cl;s;m for l; s;m 2 L and jlj 6¼ jsj 6¼ jmj to denote eight vertices of the cube:

Cl;s;m :¼ fðn1; n2; n3Þjnjlj ¼ signðlÞa; njsj ¼ signðsÞa; njmj ¼ signðmÞag:

We have to point out thatHðxÞ given in (10) assumes difference value for x being a face point, an edge point

or a vortex point. More precisely, HðxÞ ¼ p=2 for x 2 Sl, HðxÞ ¼ p=4 for x 2 El;s and HðxÞ ¼ p=8 for
x 2 Cl;s;m. The new NRBC (10) applied to cubic surface gives the following three kinds of expressions.

(1) Let x 2 Sl. More precisely, assume x ¼ ða; x2; x3Þ 2 S1, then we have

uða; x2; x3; tÞ ¼ � 1

2p

Z Z
S1

1

q
ou
ox1

� �
dr1 �

1

2p

X
l2L
l 6¼1

Z Z
Sl

signðlÞ
q

� ½u� 1
q

��
þ ou

ot

� �
1

c

�
njlj � xjlj

q
þ ou

oxjlj

� ��
drl; ð21Þ

where drl ¼ dni dnj with i 6¼ jlj, j 6¼ jlj and i 6¼ j. For other cases we have formulas similar to (21).
(2) Let x 2 El;s. More precisely, assume x ¼ ða; a; x3Þ 2 E1;2, then we have

uða; a; x3; tÞ ¼ � 1

3p

Z Z
S1

1

q
ou
ox1

� �
dr1

�
þ
Z Z

S2

1

q
ou
ox2

� �
dr2

�
� 1

3p

X
l2L
l 6¼1;2

Z Z
Sl

signðlÞ
q

� ½u� 1
q

��
þ ou

ot

� �
1

c

�
njlj � xjlj

q
þ ou

oxjlj

� ��
drl: ð22Þ

Results for other edges can obtained in a similar way.
(3) Let x 2 Cl;s;m. More precisely, assume x ¼ ða; a; aÞ 2 E1;2;3, then we have

uða; a; a; tÞ ¼ � 2

7p

Z Z
S1

1

q
ou
ox1

� �
dr1

�
þ
Z Z

S2

1

q
ou
ox2

� �
dr2 þ

Z Z
S3

1

q
ou
ox1

� �
dr3

�

� 2

7p

X
l2L
l 6¼1;2;3

Z Z
Sl

signðlÞ
q

½u� 1
q

��
þ ou

ot

� �
1

c

�
njlj � xjlj

q
þ ou

oxjlj

� ��
drl: ð23Þ

Formulas for other vertices can be derived similarly.
5. Numerical scheme

In this section, we will use a FD method to solve (1)–(4) in the computational domain Xi, incorporating a

numerical approximation to the new NRBC (21)–(23) on cubic artificial boundary to provide appropriate

data on the artificial boundary.
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5.1. Non-dissipative central difference scheme in Xi

We choose a standard explicit central difference scheme. The wave equation (1) is discretized both in time

and in space at ðx; tÞ ¼ ðx1; x2; x3; tÞ using second-order central differences. We denote by uni the numerical

grid function at ðxi; tnÞ ¼ ði1h; i2h; i3h; nDtÞ, where i ¼ ði1; i2; i3Þ 2 Z3, h ¼ a=K with some given K 2 N is the

mesh size in space step uniform in the x1, x2 and x3 directions, and Dt is the time step. The stability condition

cDt=h6 1=
ffiffiffi
3

p
is satisfied. The central difference scheme is given in the following form

unþ1
i ¼ 2uni � un�1

i þ cDt
h

� �2

uni1�1;i2;i3

�
þ uni1þ1;i2;i3

þ uni1;i2�1;i3
þ uni1;i2þ1;i3

þ uni1;i2;i3�1 þ uni1;i2;i3þ1 � 6uni1;i2;i3

	
þ f ðxi; tnÞðDtÞ2: ð24Þ
5.2. Numerical approximation to the NRBC (21)–(23)

One of the advantages of using cubic artificial boundary is that we can apply only one set of mesh grid to

both inside of and on boundary of the cube. There are three kinds of boundary mesh: face mesh rSl
j with

center at xj ¼ ðj1h; j2h; j3hÞ 2 Sl, edge mesh r
El;m
j with center at xj 2 El;m and vertex mesh r

Cl;m;s
j with center

at xj 2 Cl;m;s indicated in Fig. 8, where the three kinds of meshes are defined by

rSl
j :¼ fðn1; n2; n3Þjnjlj ¼ signðlÞa; jnm � jmhj < h=2; jns � jshj < h=2; m; s 6¼ jljg;
r
El;m

j :¼ fðn1; n2; n3Þjnjlj ¼ signðlÞa; 0 < ða� signðmÞnjmjÞ < h=2; jns � jshj < h=2; s 6¼ jlj; jmjg
[ fðn1; n2; n3Þjnjmj ¼ signðmÞa; 0 < ða� signðlÞnjljÞ < h=2; jns � jshj < h=2; s 6¼ jlj; jmjg

and

r
Cl;m;s
j :¼ fðn1; n2; n3Þjnjlj ¼ signðlÞa; 0 < ða� signðmÞnjmjÞ < h=2; 0 < ða� signðsÞnjsjÞ < h=2g

[ fðn1; n2; n3Þjnjmj ¼ signðmÞa; 0 < ða� signðlÞnjljÞ < h=2; 0 < ða� signðsÞnjsjÞ < h=2g
[ fðn1; n2; n3Þjnjsj ¼ signðsÞa; 0 < ða� signðmÞnjmjÞ < h=2; 0 < ða� signðlÞnjljÞ < h=2g:

It is easy to see from Fig. 8 that

jrSl
j j ¼ jrEl;m

j j ¼ h2; jrCl;m;s
j j ¼ 3h2=4;

where jrj denotes the measure of r.
Let x and t at the left-hand sides of the NRBC (21)–(23) be evaluated at boundary grid mesh point x ¼ xi

and time mesh point t ¼ tn respectively. Then (21)–(23) can be written as a sum of the following integrals on
face mesh, edge mesh and vertex mesh:
Fig. 8. From left to right are face mesh rSl
j , edge mesh r

El;m
j and vertex mesh r

Cl;m;s
j with their center at xj .
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I ¼
Z Z

r
Sl
j

1

jxi � njp F ðn; tn � jxi � nj=cÞdrn;
II ¼
Z Z

r
El;m
j

1

jxi � njp F ðn; tn � jxi � nj=cÞdrn

and

III ¼
Z Z

r
Cl;m;s
j

1

jxi � njp F ðn; tn � jxi � nj=cÞdrn;

where p ¼ 1; 2 and F ðn; sÞ ¼ uðn; sÞ; onuðn; sÞ or otuðn; sÞ and rSl
j , r

El;m

j and r
Cl;m;s

j stand for face mesh, edge

mesh and vertex mesh on the cubic boundary respectively. Therefore, we can give an approximation to

the NRBC (21)–(23) through approximations to I, II and III.

For rSl
i , r

El;m
i and r

Cl;m;s
i with center at the evaluating mesh point xi, we use the following approximations

to I, II and III for p ¼ 1:Z Z
r
Sl
i

1

jxi � nj F ðn; tn � jxi � nj=cÞdrn � F ðxi; tnÞ
Z Z

r
Sl
i

1

jxi � nj drn

¼ 4h logð1þ
ffiffiffi
2

p
ÞF ðxi; tnÞ; ð25Þ
Z Z
r
El;m
i

1

jxi � nj F ðn; tn � jxi � nj=cÞdrn � F ðxi; tnÞ
Z Z

r
El;m
i

1

jxi � nj drn

¼ 4h logð1þ
ffiffiffi
2

p
ÞF ðxi; tnÞ; ð26Þ
Z Z
r
Cl;m;s
i

1

jxi � nj F ðn; tn � jxi � nj=cÞdrn � F ðxi; tnÞ
Z Z

r
Cl;m;s
i

1

jxi � nj drn

¼ 3h logð1þ
ffiffiffi
2

p
ÞF ðxi; tnÞ: ð27Þ

We have to notice that since xi is the center of the domains of the integrals, the integrands including a factor

1=jxi � nj are singular. Therefore, in the above approximations only well-behaved function F of the vari-

able n is assumed at xi, where the retarded time-histories are zero. In this case, integrating the singular
integrands results in (25)–(27).

For rSl
j , r

El;m

j and r
Cl;m;s

j with center at xj 6¼ xi, using the central-point rule to I, II and III gives:Z Z
r
Sl
j

1

jxi � njp F ðn; tn � jxi � nj=cÞdrn �
h2

jxi � xjjp
F ðxj; tn � jxi � xjj=cÞ; ð28Þ
Z Z
r
El;m
j

1

jxi � njp F ðn; tn � jxi � nj=cÞdrn �
h2

jxi � xjjp
F ðxj; tn � jxi � xjj=cÞ; ð29Þ
Z Z
r
Cl;m;s
j

1

jxi � njp F ðn; tn � jxi � nj=cÞdrn �
3h2=4

jxi � xjjp
F ðxj; tn � jxi � xjj=cÞ: ð30Þ
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Using the above approximations gives an approximation to the integrals in (21)–(23). In general, the

approximation is only a first order approximation, but the numerical formulae are simple and easy

to program. Therefore we use the scheme to test stability, accuracy and convergence of the new NRBC.

High-order approximation can be obtained by using more accurate numerical integrations.

What we need next is to provide a numerical approximation to onuðn; sÞ and otuðn; sÞ on the cubic

boundary and a time interpolation approximation to F ðn; sÞ for s 2 ½tn; tnþ1�. This will be outlined below:

(1) Linear interpolation for F ðn; sÞ. For s 2 ½tn; tnþ1�, we define

F ðn; sÞ :¼ F ðn; tnÞ
tnþ1 � s

Dt
þ F ðn; tnþ1Þ

s� tn
Dt

:

(2) Numerical time derivatives

ouðn; sÞ
ot

� uðn; sþ DtÞ � uðn; s� DtÞ
2Dt

:

(3) Numerical normal derivatives to S. Here we only need to consider numerical approximation to

onuðxj; sÞ, where xj is a boundary mesh point.
(a) If xj is a center of a face mesh, for instance, rS1

j , then

onuðxj; sÞ ¼ �ox1uðxj; sÞ;

which is approximated by using one side difference quotient

onuðxj; sÞ �
uðxj; sÞ � uðxj � h1; sÞ

h
;

where h1 ¼ ðh; 0; 0Þ.
(b) If xj is a center of a edge mesh, for instance, r

E1;2

j , then

onuðxj; sÞ ¼ � 1

2
ðox1uðxj; sÞ þ ox2uðxj; sÞÞ ¼

1ffiffiffi
2

p ocuðxj; sÞ;

where c is the diagonal direction joining xj to xj � h1 � h2 with h2 ¼ ð0; h; 0Þ. Using one side

difference quotient to approximate the last directional derivative gives

onuðxj; sÞ �
1ffiffiffi
2

p uðxj; sÞ � uðxj � h1 � h2; sÞffiffiffi
2

p
h

¼ uðxj; sÞ � uðxj � h1 � h2; sÞ
2h

:

(c) If xj is a center of a vertex mesh, for instance, r
C1;2;3

j , then

onuðxj; sÞ ¼ � 1

3
ðox1uðxj; sÞ þ ox2uðxj; sÞ þ ox3uðxj; sÞÞ ¼

1ffiffiffi
3

p ocuðxj; sÞ;

where c is the diagonal direction joining xj to xj � h1 � h2 � h3 with h3 ¼ ð0; 0; hÞ. Using one side
difference quotient to approximate the last directional derivative gives

onuðxj; sÞ �
1ffiffiffi
3

p uðxj; sÞ � uðxj � h1 � h2 � h3; sÞffiffiffi
3

p
h

¼ uðxj; sÞ � uðxj � h1 � h2 � h3; sÞ
3h

:

With the above description of the numerical scheme in the interior of Xi and the numerical approxi-

mation to the proposed NRBC on its boundary, we can proceed to compute the numerical solution as
follows:

(1) Initialize the starting values u0j and u�1
j from u0ðxÞ and u1ðxÞ given in (3) and (4), respectively.

(2) Compute unþ1
j at all interior grid points in the cubic computational domain using (24).
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(3) Compute unþ1
j at all grid points on the cubic surface using the discretizations (21)–(23).

(4) Repeat the procedure (2) and (3) for n ¼ 0; 1; . . . and get the whole numerical solution unj for n ¼ 1; 2; . . .
6. Three-dimensional numerical experiments

In order to test the accuracy and stability of the proposed boundary condition, we consider an initial

value problem in R3 with zero initial conditions:

o2u
ot2

¼ r2uþ f ðx; tÞ in R3 � ð0; T Þ;

uðx; 0Þ ¼ 0 in R3;

otuðx; 0Þ ¼ 0 in R3;

where

f ðx; tÞ ¼ f ðjxj; tÞ ¼ sinðxtÞð1� jxj2=a2Þ2 jxj < a;
0 jxjP a:

�
ð31Þ

It is easy to show that the exact solution is spherically symmetric, i.e., uðx; tÞ ¼ uðjxj; tÞ and vðr; tÞ ¼ ruðr; tÞ
satisfies the one-dimensional wave equation (12) with zero initial data. Thus uðjxj; tÞ has an explicit ex-

pression through one-dimensional wave equation

uðjxj; tÞ ¼ 1

2jxj

Z t

0

Z jxjþðt�sÞ

jxj�ðt�sÞ
rf ðjrj; sÞdrds

¼ � 1

12jxj

Z min½jxjþt;1�

min½jxj;1�
sin½xðt � r þ jxjÞ�ð1� r2Þ3 dr

þ 1

12jxj

Z min½jxj;1�

min½max½jxj�t;�1�;1�
sin½xðt þ r � jxjÞ�ð1� r2Þ3 dr:
Fig. 9. Two sample slice planes from the computational domain Xi.
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The close form solution uðjxj; tÞ can be obtained by using MATHEMATICA software to carry out the last

two integrals and a C or Fortran language programm for evaluation of uðjxj; tÞ can be easily obtained by

using the software�s CForm or FortranForm function. Since the close form solution and its evaluation

programm are quite long, we omit the details here. Therefore, we can estimate the accuracy and conver-

gence rate numerically for the numerical scheme using the discretization for the new NRBC. Notice that

even though the solution is spherically symmetric, the artificial boundary (cubic surface) is not spherically

symmetric. Thus the numerical computation is a full three-dimension one.

In numerical tests we choose computational domain Xi being a cube with side length 2a ¼ 2, mesh size
h ¼ 10�1, 20�1, 30�1, 40�1, 80�1 being same in all three directions, time step Dt ¼ h=2 satisfying the stability

condition Dt=h6 1=
ffiffiffi
3

p
, and frequency x ¼ 2; 3 and 4. Notice that here the artificial cubic surface with side

length 2a ¼ 2 just contains the space support of f ðx; tÞ defined by (31). In order to show the numerical

results we choose two sample slice planes from the cubic computational domain, indicated in Fig 9. We use

uhðx; tÞ to denote the numerical solution with space step size h.
In Figs. 10–13 the numerical solution and the exact solution are shown on left-hand side and right-hand

side respectively, where their date come from the left slice plane or right slice plane of Fig. 9.

We consider the L2-error defined by

kuð�; tÞ � uhð�; tÞkL2ðXiÞ
Fig. 10. The right-hand figure is exact solution and the left-hand is numerical solution at time t ¼ 4 with x ¼ 2 and h ¼ 2=40, their

date come from the left slice plane of Fig. 9.

Fig. 11. The right-hand figure is exact solution and the left-hand is numerical solution at time t ¼ 4 with x ¼ 2 and h ¼ 2=40, their

date come from the right slice plane of Fig. 9.



Fig. 12. The right-hand figure is exact solution and the left-hand is numerical solution at time t ¼ 8 with x ¼ 3 and h ¼ 2=60, their

date come from the left slice plane of Fig. 9.

Fig. 13. The right-hand figure is exact solution and the left-hand is numerical solution at time t ¼ 8 with x ¼ 3 and h ¼ 2=60, their

date come from the right slice plane of Fig. 9.

Z.-H. Teng / Journal of Computational Physics 190 (2003) 398–418 415
and the relative L2-error defined by

kuð�; tÞ � uhð�; tÞkL2ðXiÞ=kuð�; tÞkL2ðXiÞ;

where Xi is the cubic computational domain and

kvð�; tÞkL2ðXiÞ :¼
X
j

vðxj; tÞ2h3
 !1=2

:

In the above definition the sum is over all the grid points in the Xi. Figs. 14 and 15 show the errors via time t
for a frequency x ¼ 4 with mesh size h ¼ 10�1, 20�1, 40�1, 80�1. From the numerical results shown on Figs.

14 and 15 we see that the rate of convergence is one, which coincides with the numerical NRBC, as de-

scribed in Section 5.2, being first order accurate and that the numerical NRBC with the standard interior

non-dissipative scheme is stable.

The above numerical tests were carried out on a Dell PC with PENTIUM III 800 MHz CPU. The actual

CPU times required for the computations given in Figs. 14 and 15 ranged from 10 min to hours to a few
days. As for the efficiency of the method, we can show theoretically that for M time steps and N points on

the cubic boundary OðMN 2Þ work is required for computing the boundary integral with the discrete for-



Fig. 15. The absolute errors kuð�; tÞ � uhð�; tÞkL2 via time t for x ¼ 4, where h ¼ 10�1, 20�1, 40�1, 80�1.

Fig. 14. The relative errors kuð�; tÞ � uhð�; tÞkL2=kuð�; tÞkL2 via time t for x ¼ 4, where h ¼ 10�1, 20�1, 40�1, 80�1.
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mulae (25)–(30) and OðMN 3=2Þ work is required for computing the interior difference scheme (24). In our

numerical tests the direct summation of (25)–(30) was used for computing the NRBC, so the operation

account was OðMN 2Þ. But we can show that by using a fast graded algorithm ([16]) the amount of work
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needed for computing the boundary integral within the same order of accuracy can be reduced to

OðMN 3=2 lnNÞ, which is about the same order OðMN 3=2Þ of the finite-difference calculation used in the

interior of the domain. Therefore, the computational cost for the NRBC is acceptable. Since the goal of the

present paper is to present a new exact NRBC and to demonstrate its stability and convergency, rather than

to try some high order methods and to obtain optimal operation account. The later subjects are important

areas of our further research and will be reported elsewhere.
7. Conclusion

In this paper, we have developed, analyzed and tested an exact non-reflecting boundary condition for the

numerical simulation of time-dependent wave propagation in unbounded domain. The key ingredient of

obtaining the new NRBC is to use the boundary integral equation or modified Kirchhoff formula. The new

NRBC eliminates the long-time instability observed in the Ting–Miksis NRBC even if the interior stencil

used is non-dissipative scheme and keeps all merits of the original NRBC, such as the extent of temporal

non-locality is fixed and limited; no any special function�s evaluation is required and the artificial boundary
could be any shape. Numerical discretization of the artificial boundary condition on cubic surface is devised

and three-dimensional numerical experiments are implemented on the cubic computational domain. Nu-

merical solutions agree very well with the exact solutions and the overall scheme is stable in all our tests.

The new NRBC can also be extended to three dimensional elastodynamics equation, Maxwell equations

and so on and those results will be reported elsewhere.
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